CDU 300 Cooling
Distribution Unit

Overview

VCDU 300 (Vacuum CDU) is a main DDLC (dcx direct liquid cooling) system components that provides ultimate safety and high availability features, delivering coolant under negative pressure. VCDU300 has been designed specifically to be fault tolerant and to eliminate potential risks associated with liquid cooling, while keeping maintenance deployment and operating costs low. VCDU system mitigates risk with its patented leakproof design, protects sensitive and costly electronic equipment and provides uptime required for high performance or dense cloud infrastructures. VCDU300 offers all the well-known benefits of liquid cooling without the cost, complexity and risk. The coolant is delivered to the servers and manifolds under negative pressure on both the supply and return so coolant cannot leak out; only air can leak into the system. The VCDU300 is a negative pressure system that uses liquid to cool up to 300kW of server heat. The Vacuum Cooling Distribution Unit (VCDU) can use coolant incomming from drycooler at 15- 30o C (59-86o F) to remove up to 300 kW of server heat (15o C Rise). Its innovative design and energy efficiency allow for effective cooling of servers in high density applications.

Ask for a quoteAsk for a quote
Get the specsheetGet the specsheet

Characteristics

Leak-proof 100% safe solution based on Chilldyne Cool-Flo technology. Vacuum based system eliminates all risk associated with water cooling.

Fault tolerant

HA system for critical applications

Maintenance free

All maintenance tasks performed automatically.

100% Safe

No other system on the market can compare

Full Remote Control

Maintenance and monitoring performed remotely

Features & Competitive Advantages

Safe and open solution – like nothing else on the market

Leak proof

Leak proof VCDU300 uses negative pressure on both supply and return loops, so in an unlikely event of leak, air will flow into the system, instead of coolant leaking out. This guarantees 100% safety for DLC applications.

Fault tolerant system

Fault tolerant system – VCDU300 incorporates high available and fault tolerant architecture. All critical components: pumps, heat exchangers, PDUs are redundant. The system will work even if cooling loop on cooled device would be broken, without stopping whole system or rack, as coolant simply cannot leak out.

Maintenance free

Maintenance free – State of the art VCDU300 automatically fills and drains the system, monitors the coolant and adds or drains coolant if required. Air purging is automatic to reduce setup time and maintenance effort. Coolant reservoir adds anti corrosion and anti bacterial additives automatically whereas in other simpler system coolant quality check and additives control must be done manually.

Full local & remote monitoring

Full local & remote monitoring – Web based software allows for complete control and monitor from anywhere. Web page interface can be operated with any computer equipped with an Ethernet connection. System has also touchscreen controls giving local ability to monitors coolant temperature and quality, fills, drains, data logging of key performance parameters and tests.

Inteligent CDU system

Inteligent CDU system – monitors coolant temperature to the servers, which is maintained at a temperature above the dew point in the data center based on a temperature and humidity sensor included in the CDU. System measures and records heat removed and facility water flow, vacuum, pressure, temperature (pump and facility side), dew point, primary and secondary loop coolant levels

300 kW

of heat removed in real life application

350LPM / 92 GPM

of maximum flow available

2400W

only for 300kW of cooling capacity

Ask for a quoteAsk for a quote

DESIGN REQUIREMENTS

Cooling CapacityUp to 300kW of Server Heat
Removed at 15o
C DeltaT
CDU approach temperatureDelivery at 7o
C above facility
water temperature at 300 kW
System Flow Rate300 lpm @ 0.5 bar Pressure Differential
System Power208V 15A Service nominal 2400 Watts at full flow
System ∆P (Vacuum)Max-22in. Hg.; Min 10in Hg.
Manifold to Pump TubingLength-30 feet long; ID: 1in; 6
circuits. 36 racks or more
MicrocontrollerPump controller and web based
touchscreen control
Operating SoftwareLinux, web page provided with
system status. Optional SNMP
interface or custom software to
interface with customer BMS

Simple and Effective

VCDU 300 SPECIFICATIONS

Dimensions61x92x183 cm (24x36x72 in)
Weight550 kg (1200 lbs) dry
Frame DetailsConstructed out of steel welded for maximum
strength. The units come equipped with casters
and leveling feet to allow ease of installation and
stabilization
Panel DetailsRemovable panels for full service access
Power208 or 380-480 3 phase 10/5 amps
Pumps and PipingThe water temperature to the servers is maintained
at a temperature above the dew point in the
data center based on a temperature and humidity
sensor included in the CDU.
The temperature in the fluid supply reservoir
controlled by a PWM modulated HX pump.
Units equipped with a water filtration system with
100 micron filters.
Heat ExchangerThe unit is equipped with two, stainless steel
brazed plate liquid/liquid heat exchangers. Facility
cooling water flows in a second loop within the
CDU through these heat exchangers.
The heat exchangers are connected in series to
minimize the processor temperature.
The facility side of the HXs are connected using
5 cm (2”) diameter, stainless steel sanitary or
copper water pipe.
ControllerThe unit includes a microprocessor controller
touch screen display mounted on the front of the
unit for user interface accessibility without removing
exterior panels.
The unit automatically controls the flow through
the servers, test the system for leaks, fill, drain
and maintain coolant levels.
The unit monitors the vacuum, pressure, temperature
(pump and facility side), total dissolved solids
(TDS), dew point, water levels, and coolant levels
EnvironmentalUnit is designed to operate in ambient conditions
5-40o
C (40-105o
F), 0-95%RH (non-condensing),
0-2000m (0-6000ft) elevation.

FACILITY INTERFACE SPECIFICATIONS

Cooling Water2°C to 45°C at 92 gpm (350 lpm) ASHRAE W4 15
psi (1 bar) differential
Tap Water2 GPM (7.5 lpm) 20-100 psi (1-6 bar)
Drain Connection4 GPM; 2in (50 mm)

Complete liquid cooling portfolio

We know that every cooling system must guarantee reliability and safety for costly computing infrastructure. We saw large area for improvement in existing solutions and decided to design something better. Our systems are crafted carefully to deliver ultimate density, energy efficiency & sustainability without painful customisation. We serve customers complete, 100% safe, open, well-thought portfolio of direct chip and immersion liquid cooling.

DLC CDU300 – Coolant Distribution Unit – the crucial component of every DLC (Direct Liquid Cooling) System. Cooling capacities ranging from 20kW to 305kW with hot water cooling. CDU ensure condensate-free, optimum operation with dew point temperature control. Redundant pumps & remote control guarantee high availability and uptime.
DLC LDU – Liquid Distribution Unit. Modular LDU distributes fluid to and from the devices. Offers the biggest density in the DLC industry, with hexagonally arranged CTC dry break quick disconnects. A single 42 rack scaled unit can provide from 40 to 128 sockets. The CPC couplings allow easy maintenance, as disconnection and connection can be performed using just one hand. The unit is equipped with VRV valves (Vent Release Valve) so no complicated maintenance is necessary. Sold with a set of universal brackets which fit any 42U rack.
DLC CPU LGA3647 MODULE – first and only DLC CPU module for intel processors with LGA 3647 socket, that allows operator to create his own cooling loop and to implement liquid cooling to any server model / mainboard design. This is possible due to a streamlined in-line connection with 1 inlet and 3 outlets, as well as PTL quick disconnects ports.
ILC UNI ENCLOSURE – Universal and Open ILC Enclosure for standard servers and crypto-currency mining infrastructure. Each UNI ILC Enclosure will accommodate 48 GPUs (4 rigs), or 10 standard S9/Z9/A9 asic miners or 15 web servers. UNI Enclosures can be stacked safely on proprietary rack system providing best space utilisation. 20ft iso container can hold up to 2680 GPU’s or 560 asic miners with 4 level UNI Enclosure stack.
DLC VCDU 300 is a main DLC (Direct Liquid Cooling) System component. This unit provides ultimate safety and high availability features, delivering coolant under negative pressure. VCDU300 has been designed specifically to be fault tolerant and to eliminate virtually any risks associated with liquid cooling. VCDU system patented leak – proof design runs coolant under negative pressure on both the supply and return so coolant cannot leak out – only air can leak into the system. protects costly electronic equipment.

Advantages

Next Gen Liquid Cooling System. Safe. Open. Flexible. Different than anything else.

We know from experience all the troubles related to positive pressure water cooling systems. Risk of flooding the costly systems is biggest concern for infrastructure operators. This is why we chose state of the art technologies to provide completely safe, 100% leak-proof system. We guarantee complete safety using three technologies:

  • One is VCDU negative pressure vacuum based system that guarantees total safety in difference to positive pressure CDU’s. In an unlikely event of integrity loss, Cool-Flo® technology from Chilldyne works with negative pressure on both supply and return, so if anything happens air will flow into the system instead of coolant leaking out. The “leak” does not stop the operation and electronic components are safe from water damage. The system also automatically evacuates coolant from a server when it is disconnected from a liquid cooling system for maintenance.
  • Second feature: proprietary nanoparticles enhanced engineered fluid. We use two types of dielectric fluids for DLC and ILC cooling. Single or dual phase dielectric fluid option provides another layer of protection.
  • Third component: over engineering policy. All modules, ports, tubing, dry break quick disconnects and couplings are more robust than necessary. We use high pressure rated  components in our low-pressure system. We choose best in class simple solutions – e.g. flat tubing so the loop is twice as much durable than corrugated. Our tube can withstand over 650 PSI, when typical pressure in our system is up to 10 PSI. Because safety & uptime matters most.

Liquid cooling technology provide massive saving for hyperscale, enterprise and smb installations. Even individual users see significant cost cut. Savings can be measured in CAPEX and OPEX so ROI is immediate. In terms of CAPEX there are three biggest factors:

  • cost of liquid cooling systems is usually lower than air cooling infrastructure of the same capacity. In most cases it’s 15-20% less.
  • liquid cooling renders the need for costly HVAC infrastructure which effects in fever pieces of critical equipment in data hall space. Liquid cooled servers require only 20% of previous airflow with allows for free-cooling during all seasons. Of course immersion cooling requires virtually zero airflow thus providing another discount.
  • Increase in  rack power density (from 10-20 kW to 100 kW and beyond) allows to lower data center footprint, resign from air exchange plenum, stack data center vertically. Fewer server racks and interconnects means another reduction in capital cost.

Both of this factors results in reduced site & structural construction, compared to traditional build. Simplified electrical and mechanical topology and faster go to market gives tremendous advantage to data centers outfitted with liquid cooling, over air cooled designs. For new data center projects, the cost savings is even more dramatic as capital expenditures can be cut nearly in half. 

The biggest advantages however starts with OPEX:

  • For most installations we observe an overall reduction in average data center power consumption by up to 45%. The savings comes from a combination of HVAC elimination, reduced infrastructure footprint, and reduced fan power consumption. This cuts lot’s of operational cost associated with power cost.
  • Increase in computing power of liquid cooled processors and gpu’s effects in 15-20% more performance. For specific application it can reach with additional fine tuning and overclocking even 30% more compared to air cooled server rooms. This means we can spend 20% less on computing infrastructure having more performance for less.
  • Increased reliability of equipment through elimination of the most of airflow. Liquid protects IT devices from harsh environment including high temperature, humidity, vibration, dust, air contamination extends MTBF of ICT infrastructure and extends lifespan of systems.
  • Riddance of most of aircooling critical infrastructure that must be maintained on regular basis, less maintenance overhead, means reduced maintenance and personel cost

Significant reduction in CAPEX and just fraction of traditional datacenter OPEX decrease Total Cost of Ownership (TCO) of running ICT infrastructure.

Currently available liquid cooling systems are highly customised – “boutique” solutions. Water cooling coldplates and tubing length must be carefully prepared for one and one only specific server model. Even the size of the rack which holds the device must be taken into consideration, as tubing length between the coldplates and manifold must be carefully measured. All recognised hardware vendors propose liquid cooling for one single server in their portfolio – in the same way as IBM in Manframe s/360 servers in 1965.  In case of immersion cooling available solutions support only some types of servers, switches and storage systems because of dimensions of immersion baths. Summing up – all solutions we saw and tested were unique and proprietary.

Industry however requires open solutions, and typical cloud / colo infrastructure is usually diversified with many server vendors and types. In case of immersion cooling our universal enclosures and computing enclosures can accommodate variety of servers, switches and storage systems from a-brands and oem vendors. DCX believes in open systems and our liquid cooling systems support over 95% of available hardware without specific customisation. In case od direct chip cooling – DCX patent pending Next Gen DLC system features Push To Lock quick disconnect ports on cooling module / rack level. Customer can purchase Next Gen DLC components as every other third party product: memory chip, disk drive or gpu card. Administrators can link DLC modules with our proprietary tubing and create the loop for every server and platform worldwide – without being forced to order custom solution for each device.

The best is that using provided leak- proof tubing & PTL quick disconnects the Customer can reconfigure the LOOP if needed and move to the next generation server, utilising the same socket, cooling modules, and LDUs (liquid distribution units). This extends lifetime and ROI of Next Gen Liquid Cooling components  three times comparing to current DLC offering.

Modern, energy efficient CPU’s, GPU’s and memory chips are subject to thermal throttling. Vendors know that overheating can cause errors and accelerate component failure. This is why all existing hardware operate with lower performance than advertised if reaching certain thermal point. In Intel Skylake architecture AVX-512 and heavy AVX2 instructions throttle the CPU’s frequency. This is why Intel diversifies processor models to “thermally optimised” and not In case of memory – command rates are reduced if system works over certain limits.

One need to realise that in real case application most of the customers get 20% less performance from their chips – if CPU temperature reaches over 55C/130F – cpu frequency will be reduced and performance hit may be even higher than 20%. For most of Nvidia GPU’s – thermal throttle point starts at 50C/122F and clock frequency will drop – step by step to 50% of base Mhz.

To put it simply – you pay 100%  price for the chip and get 80% of performance in real world applications. There are two ways to cope with that issue: one is to use power hungry chillers to run the systems in cold air. The second is to use direct liquid cooling and extract the heat with warm fluid – at the source and keep the chips at optimum 50C/120F temperature. Liquid cooling allows also, with additional fine tuning and overclocking, to turbo boost your chips getting additional increase in performance of  15% to 25%. Without any compressed cooling.

Sharp increases in energy prices have forced many IT pros to look at how inefficient existing cooling practices are. Traditionally only half the total data center energy is used at the equipment with typically about 30-45% or even over 50% of the total data center energy is consumed by the cooling infrastructure. Most of this is consumed by the site chiller plant, used to provide chilled water to the data center, and by computer room air conditioners (CRAC) and air handlers (CRAH), used to cool the computer room. With average PUE of 1.89 for many datacentres over 50% of energy consumption and carbon footprint is not caused by computing but by powering the necessary cooling systems to keep the processors from overheating.

Datacenters use currently 3% of the world’s energy (around 420 terawatts) which is around 45% more than the entire United Kingdom energy spend. And this consumption will double every four years. Researchers predicts that by 2025, data centres will amount to largest share of global electricity production at 33% This is why EU Commission issued EU Code of Conduct on Data Centre Energy Efficiency along with best practice guidelines.

DCX systems save over 50 % of typical data center’s energy consumption with hot liquid cooling and 30% save can be expected in small scale consumer systems. For most installations we observe an overall reduction in average data center power consumption by up to 45%. The savings comes from a combination of HVAC elimination, reduced infrastructure footprint, and reduced fan power consumption. This cuts lot’s of operational cost associated with power cost. Increase in computing power of liquid cooled processors and gpu’s effects also in 15-20% more performance. For specific application it can reach with additional fine tuning and overclocking even 30% more compared to air cooled server rooms. This means we can do the same having 15-20% less servers.

Moreover, high-grade heat at the output can be used for such needs as heating building spaces. In our liquid cooling installations, with 50-60*C hot fluid output we reuse from 64% to over 80% of usually wasted heat. This is why liquid cooling sites demonstrate the extreme energy efficiency and can deliver heat to local community or office space.

Climate change is recognised as one of the key challenges humankind is facing.
The Information and Communication Technology (ICT) sector including data centres generates up to 2% of the global CO2 emissions, a number on par to the aviation sector contribution. Problem with supply of renewable sourced energy will make data centres one of the biggest polluters in just seven years.

Additionally data centres are estimated to have the fastest growing carbon footprint from across the whole ICT sector, mainly due to technological advances such as the cloud computing and the rapid growth of the use of Internet services. ICT industry is posed to be responsible for up to 3.5% of global emissions by 2020, with this value potentially escalating to 14% by 2040, according to Climate Change News. Researchers say this will be directly related to the fact that the data centre sector could be using 20% of all available electricity in the world by 2025 on the back of the large amounts of data being created at a fastest speed than ever before seen.

Our solutions render the need to use high GWP refrigerant associated with chilling plants, reduce 3 tons carbon dioxide emission per kW of ICT equipment in one year and reduce power consumption on average by 50%. Simple as that. Moreover, high-grade heat at the output can be used for such needs as heating building spaces. In our liquid cooling installations, with 50-60*C hot fluid output we reuse from 64% to over 80% of usually wasted heat. This is why liquid cooling sites demonstrate the extreme energy efficiency and can deliver heat to local community or office space.

We will guide
you the whole time.

How to Buy

Product Support

Email Sales

Chat with Sales