Hybrid Cooled Mobile Crypto Mining Unit

Overview

Most of industry crypto mining endeavours brings significant challenges. Power usage, limited possibility for overclocking, low reliability, huge noise, enormous amount of heat that requires specific location with low ambient temp, large space to space out hot devices and monumental masses of air pushed through systems. Dust, vibrations and humidity degrade already low MTBF.

Small but dense Hybrid Cooled Mobile Crypto Mining Units as this patent pending 20ft containerised system with direct chip (DLC) liquid cooling technology is the answer for most of the problems that bothers industry sized cryptocurrency mining farms.

DCX Hybrid Cooled Mobile Crypto Mining Unit solves all issues with proprietary, patent pending direct chip/gpu liquid cooling system. Dense stack of GPU cards in mesh housing provides high airflow for remaining 12% of heat from PSUs and Mainboards. High quality long life side filters protect electronic equipment from dust and vibration – main causes of electronic equipment failures. Unmatched density of over 240 mining rigs with 12GPU each effects in huge 2800 GPU cards  contained in 20ft container space. This way system can be safely transported to convenient location with low power cost and convenient legal framework.

Security is provided with continuous monitoring, attested high grade bars on container sides and external filtration structure / carport.

Ask for quoteAsk for quote

Characteristics

Small but dense Mobile Crypto Mining Container with biggest density possible and available in the market.

Unprecedented density and mobility

HODL’s maximum amounts of crypto mining infrastructure that is physically possible: 224 rigs with 2680 gpu’s total or 560 standard S9/A9/Z9 asic miners in simple and efficient installation. Mobility of the system allows for low cost, safe  migration of your assets to choose best tax framework for your operation.

Accessing Cheap or Excess Energy Capacity

You can run your infrastructure close to standard, solar, hydroelectric or biomass power plants exploiting opportunity of accessible excess or renevable energy to power up your blockchain infrastructure. Our mining units can monetize local overcapacities and get the best energy contracts.

Maximum Energy Efficiency

We cut electricity bills by over 30% with our new locally designed a radically new, self-regulating immersion cooling system specifically designed for the blockchain mining industry. Patent-pending solution achieves a best-in-class energy efficiency with a consumption of only ~1% of the system’s total energy consumption.

Improving your infrastructure MTBF

Engineered fluid protects your miners from harsh environment – high temperature, humidity, dust and vibration which are major causes of electronics equipment failures. System works flawlessly even in hot ambient temperatures. That means low maintenance and remote operation without any risks

Features & Competitive Advantages

Safe and open solution – like nothing else on the market

Flexible system supports all crypto mining hardware

Standard UNI Enclosure is able to sustain crypto mining hardware including gpu rigs and asic miners. Each Universal ILC Enclosure will accommodate 4 GPU rigs with up to 12 GPU each, or 10 standard S9 / Z9 / A9 ASIC miners. That results in 2680 gpu’s or 560 asic miners capacity in 20′ ISO container space!

More Performance

Numbers are impressive – 30% less electricity bills with PUE of 1.05 – most of the fans can be removed and system cools miners a long with PSU’s. Liquid cooling systems allows for overclocking and fine tuning with custom firmware which effects in 20% more hashrate with hardware and software optimisation. Additionally most users get up to 10% more shares from stability.

Most dense Edge DC worldwide

MMU / MCU may be equipped with up to 42 Computing ILC Enclosures or 56 Universal ILC Enclosures. Universal enclosure may hold 15 standard atx webservers from many suppliers, and Computing ILC Enclosure over 95% of available server/ storage and networking systems. This provides biggest density in industry of over 630 one U systems in 20ft container format, without loosing ICO compliance.

Less Maintenance. Better uptime.

Engineered fluid is compatible with most of the platforms and will guarantee improved MTBF through the whole lifecycle of the server / storage system / mining infrastructure. Systems immersed in the liquid are completely protected from high temperature, humidity, dust and vibration. Lack of HVAC renders the need for costly quarterly replacements. All that results in immediate increase in server MTBF and elimination of a majority of scheduled maintenance.

Sustainable

Sustainability is the key. Proprietary engineered fluid extracts 100% of the heat from ICT or Blockchain infrastructure. Hot 60*C/140*F  liquid can be #reused for local community or office heating. This Containerised mobile system can be located close to solar or hydroelectric or biomass power plants to use excess energy or waste/biomass and power up the infrastructure with PUE close to 1.01 and virtually 0 carbon footprint.

Easy to install.

System works flawlessly even in hot climate with high ambient temperatures being real alternative for distant area HVAC cooled non ISO container / modular datacenters usd mostly by Telco or Oil & Gas industry. Because liquid cooled servers use up to 20% less power vs. equivalent air cooled servers and CPU’s operate up to 30C cooler and ca. 20% more efficient compared to air cooling, customer can spend less for ICT infrastructure and find more convenient ways to power up an maintain the MCU container.

2880 GPUs

In 240 mining rigs, 12 GPU’s each

30% Savings

In electricity bills

30% more hashrate

thanks to overclocking and additionally 10% more shares from stability.

Ask for quoteAsk for quote

Complete liquid cooling portfolio

We know that every cooling system must guarantee reliability and safety for costly computing infrastructure. We saw large area for improvement in existing solutions and decided to design something better. Our systems are crafted carefully to deliver ultimate density, energy efficiency & sustainability without painful customisation. We serve customers complete, 100% safe, open, well-thought portfolio of direct chip and immersion liquid cooling.

DLC CDU300 – Coolant Distribution Unit – the crucial component of every DLC (Direct Liquid Cooling) System. Cooling capacities ranging from 20kW to 305kW with hot water cooling. CDU ensure condensate-free, optimum operation with dew point temperature control. Redundant pumps & remote control guarantee high availability and uptime.
DLC LDU – Liquid Distribution Unit. Modular LDU distributes fluid to and from the devices. Offers the biggest density in the DLC industry, with hexagonally arranged CTC dry break quick disconnects. A single 42 rack scaled unit can provide from 40 to 128 sockets. The CPC couplings allow easy maintenance, as disconnection and connection can be performed using just one hand. The unit is equipped with VRV valves (Vent Release Valve) so no complicated maintenance is necessary. Sold with a set of universal brackets which fit any 42U rack.
DLC CPU LGA3647 MODULE – first and only DLC CPU module for intel processors with LGA 3647 socket, that allows operator to create his own cooling loop and to implement liquid cooling to any server model / mainboard design. This is possible due to a streamlined in-line connection with 1 inlet and 3 outlets, as well as PTL quick disconnects ports.
ILC UNI ENCLOSURE – Universal and Open ILC Enclosure for standard servers and crypto-currency mining infrastructure. Each UNI ILC Enclosure will accommodate 48 GPUs (4 rigs), or 10 standard S9/Z9/A9 asic miners or 15 web servers. UNI Enclosures can be stacked safely on proprietary rack system providing best space utilisation. 20ft iso container can hold up to 2680 GPU’s or 560 asic miners with 4 level UNI Enclosure stack.
DLC VCDU 300 is a main DLC (Direct Liquid Cooling) System component. This unit provides ultimate safety and high availability features, delivering coolant under negative pressure. VCDU300 has been designed specifically to be fault tolerant and to eliminate virtually any risks associated with liquid cooling. VCDU system patented leak – proof design runs coolant under negative pressure on both the supply and return so coolant cannot leak out – only air can leak into the system. protects costly electronic equipment.
DLC CDU50 – The 5U Cooling Distribution Unit (CDU) is a compact version of cooling distribution unit designed to fit in the rack and provide 50kW of cooling capacity. It is designed to provide clean, filtered water supply for CPU / GPU modules. The operation is secure and closely controlled above dew-point. CDU50 is capable of 50kW cooling capacity with supply water between 15C (59F) to 45C (113F). On the front face of the 5U Unit is the touch screen operator interface for ease of operation and monitoring.

Advantages

Next Gen Liquid Cooling System. Safe. Open. Flexible. Different than anything else.

We know from experience all the troubles related to positive pressure water cooling systems. Risk of flooding the costly systems is biggest concern for infrastructure operators. This is why we chose state of the art technologies to provide completely safe, 100% leak-proof system. We guarantee complete safety using three technologies:

  • One is VCDU negative pressure vacuum based system that guarantees total safety in difference to positive pressure CDU’s. In an unlikely event of integrity loss, Cool-Flo® technology from Chilldyne works with negative pressure on both supply and return, so if anything happens air will flow into the system instead of coolant leaking out. The “leak” does not stop the operation and electronic components are safe from water damage. The system also automatically evacuates coolant from a server when it is disconnected from a liquid cooling system for maintenance.
  • Second feature: proprietary nanoparticles enhanced engineered fluid. We use two types of dielectric fluids for DLC and ILC cooling. Single or dual phase dielectric fluid option provides another layer of protection.
  • Third component: over engineering policy. All modules, ports, tubing, dry break quick disconnects and couplings are more robust than necessary. We use high pressure rated  components in our low-pressure system. We choose best in class simple solutions – e.g. flat tubing so the loop is twice as much durable than corrugated. Our tube can withstand over 650 PSI, when typical pressure in our system is up to 10 PSI. Because safety & uptime matters most.

Liquid cooling technology provide massive saving for hyperscale, enterprise and smb installations. Even individual users see significant cost cut. Savings can be measured in CAPEX and OPEX so ROI is immediate. In terms of CAPEX there are three biggest factors:

  • cost of liquid cooling systems is usually lower than air cooling infrastructure of the same capacity. In most cases it’s 15-20% less.
  • liquid cooling renders the need for costly HVAC infrastructure which effects in fever pieces of critical equipment in data hall space. Liquid cooled servers require only 20% of previous airflow with allows for free-cooling during all seasons. Of course immersion cooling requires virtually zero airflow thus providing another discount.
  • Increase in  rack power density (from 10-20 kW to 100 kW and beyond) allows to lower data center footprint, resign from air exchange plenum, stack data center vertically. Fewer server racks and interconnects means another reduction in capital cost.

Both of this factors results in reduced site & structural construction, compared to traditional build. Simplified electrical and mechanical topology and faster go to market gives tremendous advantage to data centers outfitted with liquid cooling, over air cooled designs. For new data center projects, the cost savings is even more dramatic as capital expenditures can be cut nearly in half. 

The biggest advantages however starts with OPEX:

  • For most installations we observe an overall reduction in average data center power consumption by up to 45%. The savings comes from a combination of HVAC elimination, reduced infrastructure footprint, and reduced fan power consumption. This cuts lot’s of operational cost associated with power cost.
  • Increase in computing power of liquid cooled processors and gpu’s effects in 15-20% more performance. For specific application it can reach with additional fine tuning and overclocking even 30% more compared to air cooled server rooms. This means we can spend 20% less on computing infrastructure having more performance for less.
  • Increased reliability of equipment through elimination of the most of airflow. Liquid protects IT devices from harsh environment including high temperature, humidity, vibration, dust, air contamination extends MTBF of ICT infrastructure and extends lifespan of systems.
  • Riddance of most of aircooling critical infrastructure that must be maintained on regular basis, less maintenance overhead, means reduced maintenance and personel cost

Significant reduction in CAPEX and just fraction of traditional datacenter OPEX decrease Total Cost of Ownership (TCO) of running ICT infrastructure.

Currently available liquid cooling systems are highly customised – “boutique” solutions. Water cooling coldplates and tubing length must be carefully prepared for one and one only specific server model. Even the size of the rack which holds the device must be taken into consideration, as tubing length between the coldplates and manifold must be carefully measured. All recognised hardware vendors propose liquid cooling for one single server in their portfolio – in the same way as IBM in Manframe s/360 servers in 1965.  In case of immersion cooling available solutions support only some types of servers, switches and storage systems because of dimensions of immersion baths. Summing up – all solutions we saw and tested were unique and proprietary.

Industry however requires open solutions, and typical cloud / colo infrastructure is usually diversified with many server vendors and types. In case of immersion cooling our universal enclosures and computing enclosures can accommodate variety of servers, switches and storage systems from a-brands and oem vendors. DCX believes in open systems and our liquid cooling systems support over 95% of available hardware without specific customisation. In case od direct chip cooling – DCX patent pending Next Gen DLC system features Push To Lock quick disconnect ports on cooling module / rack level. Customer can purchase Next Gen DLC components as every other third party product: memory chip, disk drive or gpu card. Administrators can link DLC modules with our proprietary tubing and create the loop for every server and platform worldwide – without being forced to order custom solution for each device.

The best is that using provided leak- proof tubing & PTL quick disconnects the Customer can reconfigure the LOOP if needed and move to the next generation server, utilising the same socket, cooling modules, and LDUs (liquid distribution units). This extends lifetime and ROI of Next Gen Liquid Cooling components  three times comparing to current DLC offering.

Modern, energy efficient CPU’s, GPU’s and memory chips are subject to thermal throttling. Vendors know that overheating can cause errors and accelerate component failure. This is why all existing hardware operate with lower performance than advertised if reaching certain thermal point. In Intel Skylake architecture AVX-512 and heavy AVX2 instructions throttle the CPU’s frequency. This is why Intel diversifies processor models to “thermally optimised” and not In case of memory – command rates are reduced if system works over certain limits.

One need to realise that in real case application most of the customers get 20% less performance from their chips – if CPU temperature reaches over 55C/130F – cpu frequency will be reduced and performance hit may be even higher than 20%. For most of Nvidia GPU’s – thermal throttle point starts at 50C/122F and clock frequency will drop – step by step to 50% of base Mhz.

To put it simply – you pay 100%  price for the chip and get 80% of performance in real world applications. There are two ways to cope with that issue: one is to use power hungry chillers to run the systems in cold air. The second is to use direct liquid cooling and extract the heat with warm fluid – at the source and keep the chips at optimum 50C/120F temperature. Liquid cooling allows also, with additional fine tuning and overclocking, to turbo boost your chips getting additional increase in performance of  15% to 25%. Without any compressed cooling.

Sharp increases in energy prices have forced many IT pros to look at how inefficient existing cooling practices are. Traditionally only half the total data center energy is used at the equipment with typically about 30-45% or even over 50% of the total data center energy is consumed by the cooling infrastructure. Most of this is consumed by the site chiller plant, used to provide chilled water to the data center, and by computer room air conditioners (CRAC) and air handlers (CRAH), used to cool the computer room. With average PUE of 1.89 for many datacentres over 50% of energy consumption and carbon footprint is not caused by computing but by powering the necessary cooling systems to keep the processors from overheating.

Datacenters use currently 3% of the world’s energy (around 420 terawatts) which is around 45% more than the entire United Kingdom energy spend. And this consumption will double every four years. Researchers predicts that by 2025, data centres will amount to largest share of global electricity production at 33% This is why EU Commission issued EU Code of Conduct on Data Centre Energy Efficiency along with best practice guidelines.

DCX systems save over 50 % of typical data center’s energy consumption with hot liquid cooling and 30% save can be expected in small scale consumer systems. For most installations we observe an overall reduction in average data center power consumption by up to 45%. The savings comes from a combination of HVAC elimination, reduced infrastructure footprint, and reduced fan power consumption. This cuts lot’s of operational cost associated with power cost. Increase in computing power of liquid cooled processors and gpu’s effects also in 15-20% more performance. For specific application it can reach with additional fine tuning and overclocking even 30% more compared to air cooled server rooms. This means we can do the same having 15-20% less servers.

Moreover, high-grade heat at the output can be used for such needs as heating building spaces. In our liquid cooling installations, with 50-60*C hot fluid output we reuse from 64% to over 80% of usually wasted heat. This is why liquid cooling sites demonstrate the extreme energy efficiency and can deliver heat to local community or office space.

Climate change is recognised as one of the key challenges humankind is facing.
The Information and Communication Technology (ICT) sector including data centres generates up to 2% of the global CO2 emissions, a number on par to the aviation sector contribution. Problem with supply of renewable sourced energy will make data centres one of the biggest polluters in just seven years.

Additionally data centres are estimated to have the fastest growing carbon footprint from across the whole ICT sector, mainly due to technological advances such as the cloud computing and the rapid growth of the use of Internet services. ICT industry is posed to be responsible for up to 3.5% of global emissions by 2020, with this value potentially escalating to 14% by 2040, according to Climate Change News. Researchers say this will be directly related to the fact that the data centre sector could be using 20% of all available electricity in the world by 2025 on the back of the large amounts of data being created at a fastest speed than ever before seen.

Our solutions render the need to use high GWP refrigerant associated with chilling plants, reduce 3 tons carbon dioxide emission per kW of ICT equipment in one year and reduce power consumption on average by 50%. Simple as that. Moreover, high-grade heat at the output can be used for such needs as heating building spaces. In our liquid cooling installations, with 50-60*C hot fluid output we reuse from 64% to over 80% of usually wasted heat. This is why liquid cooling sites demonstrate the extreme energy efficiency and can deliver heat to local community or office space.

We will guide
you the whole time.

How to Buy

Product Support

Email Sales

Chat with Sales